株洲市某中学利用周末组织教职员工进行了一次秋季登石峰山健身的活动,有人参加,现将所有参加人员按年龄情况分为,,,,,, 等七组,其频率分布直方图如下图所示.已知之间的参加者有8人.(1)求和之间的参加者人数;(2)已知和之间各有名数学教师,现从这两个组中各选取人担任接待工作,设两组的选择互不影响,求两组选出的人中都至少有名数学教师的概率?(3)组织者从之间的参加者(其中共有名女教师,其余全为男教师)中随机选取名担任后勤保障工作,其中女教师的人数为,求的分布列和数学期望.
(本小题满分12分)已知平面上三个向量,其中,(1)若,且∥,求的坐标;(2)若,且,求与夹角的余弦值.
(本小题满分12分)已知函数,其中,且的最小正周期为. (Ⅰ) 求的单调递增区间;(Ⅱ) 利用五点法作出在上的图象.
(本小题满分10分)已知.(1)化简; (2)若是第三象限角,且,求的值.
(本小题满分10分)选修4—5:不等式选讲已知关于x的不等式(其中)。(1)当a=4时,求不等式的解集;(2)若不等式有解,求实数a的取值范围。
(本小题满分10分)选修4—4:坐标系与参数方程在极坐标系中,曲线,过点A(5,α)(α为锐角且)作平行于的直线,且与曲线L分别交于B,C两点。(1)以极点为原点,极轴为x轴的正半轴,取与极坐标相同单位长度,建立平面直角坐标系,写出曲线L和直线的普通方程;(2)求|BC|的长。