操作:如图①,△ABC是等边三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角:(1)角的两边分别交AB、AC边于M、N两点,连接MN.探究:线段BM、MN、NC之间的关系,并加以证明.(2)若角的两边分别交AB、CA的延长线于M、N两点,连接MN。在图②中画出图形,再直接写出线段BM、MN、NC之间的关系.
如图,一次函数的图象与反比例函数(x<0)的图象相交于A点,与y轴、x轴分别相交于B、C两点,且C(2,0),A点的横坐标为-1.(1)求一次函数的解析式;(2)设函数(x>0)的图象与(x<0)的图象关于y轴对称,在(x>0)的图象上取一点P(P点的横坐标大于2),过P点作PQ⊥x轴,垂足是Q,若四边形BCQP的面积等于2,求P点的坐标.
为实施“农村留守儿童关爱计划”,某校对全校各班留守儿童的人数情况进行了统计,发现各班留守儿童人数只有1名、2名、3名、4名、5名、6名共六种情况,并制成了如下两幅不完整的统计图:(1)将该条形统计图补充完整.(2)求该校平均每班有多少名留守儿童?(3)某爱心人士决定从只有2名留守儿童的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名留守儿童来自同一个班级的概率.
如图,四边形ABCD是边长为a的正方形,点G,E分别是边AB,BC的中点,∠AEF=90o,且EF交正方形外角的平分线CF于点F.(1)证明:△AGE≌△ECF;(2)求△AEF的面积.
如图1,已知菱形ABCD的边长为2,点A在x轴负半轴上,点B在坐标原点.点D的坐标为(,3),抛物线y=ax2+b(a≠0)经过AB、CD两边的中点.(1)求这条抛物线的函数解析式;(2)将菱形ABCD以每秒1个单位长度的速度沿x轴正方向匀速平移(如图2),过点B作BE⊥CD于点E,交抛物线于点F,连接DF、AF.设菱形ABCD平移的时间为t秒(0<t<)①当t=1时,△ADF与△DEF是否相似?请说明理由;②连接FC,以点F为旋转中心,将△FEC按顺时针方向旋转180°,得△FE′C′,当△FE′C′落在x轴与抛物线在x轴上方的部分围成的图形中(包括边界)时,求t的取值范围.(写出答案即可)
如图,在矩形ABCD中,AD=4,M是AD的中点,点E是线段AB上一动点,连接EM并延长交线段CD的延长线于点F.(1)如图1,求证:AE=DF;(2)如图2,若AB=2,过点M作 MG⊥EF交线段BC于点G,求证:△GEF是等腰直角三角形(3)如图3,若AB=,过点M作 MG⊥EF交线段BC的延长线于点G.①直接写出线段AE长度的取值范围;②判断△GEF的形状,并说明理由.