求的值,其中,.
如图,在平面直角坐标系中,四边形ABCD是矩形,AD∥x轴,A(,),AB=1,AD=2.(1)直接写出B、C、D三点的坐标;(2)将矩形ABCD向右平移m个单位,使点A、C恰好同时落在反比例函数()的图象上,得矩形A′B′C′D′.求矩形ABCD的平移距离m和反比例函数的解析式.
如图,AC=DC,BC=EC,∠ACD=∠BCE.求证:∠A=∠D.
(1)计算:;(2)化简:.
M 如图,已知抛物线 y = a x 2 + b x + c 经过 A ( ﹣ 2 , 0 ) , B ( 4 , 0 ) , C ( 0 , 3 ) 三点. (1)求该抛物线的解析式; (2)在y轴上是否存在点M,使 △ A C M 为等腰三角形?若存在,请直接写出所有满足要求的点M的坐标;若不存在,请说明理由; (3)若点 P ( t , 0 ) 为线段 A B 上一动点(不与A,B重合),过 P 作 y 轴的平行线,记该直线右侧与 △ A B C 围成的图形面积为 S ,试确定 S 与 t 的函数关系式.
如图,AB为⊙O的直径,直线CD切⊙O于点D,AM⊥CD于点M,BN⊥CD于N.(1)求证:∠ADC=∠ABD;(2)求证:AD2=AM•AB;(3)若AM=,sin∠ABD=,求线段BN的长.