如图.点A、B、C、D在⊙O上,AC⊥BD于点E,过点O作OF⊥BC于F,求证:(1)△AEB∽△OFC;(2)AD=2FO.
直线y=x+b与x轴交于点C(4,0),与y轴交于点B,并与双曲线 (x<0)交于点A(-1,n). (1)求直线与双曲线的解析式; (2)连接OA,求∠OAB的正弦值;(提示:过O点作OM垂直AC) (3)若点D在x轴的正半轴上,是否存在以点D,C,B构成的三角形与△OAB相似?若存在,求出点D的坐标;若不存在,请说明理由.
中学生骑电动车上学的现象越来越受到社会的关注.为此某媒体记者随机调查了某市城区若干名中学生家长对这种现象的态度(态度分为:A:无所谓;B:反对;C:赞成),并将调査结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题: (1)此次抽样调査中,共调査了 名中学生家长; (2)将图①补充完整; (3)根据抽样调查结果,请你估计该市城区80 000名中学生家长中有多少名家长持赞成态度?
如图,已知,求AB和BC的长.
若关于x的方程 有实数根.(1)求a的取值范围;(2)若a为符合条件的最小整数,求此时方程的根
如图,在Rt△ABC中,∠C=90°,BD平分∠ABC,tan A=,AD=20.求BC的长.