已知数列的前项和.(Ⅰ)求数列的通项公式;(Ⅱ)令,,试比较与的大小,并予以证明.
(本小题满分12分) 某校选拔若干名学生组建数学奥林匹克集训队,要求选拔过程分前后两次进行,当第一次选拔合格后方可进入第二次选拔,两次选拔过程相互独立。根据甲、乙、丙三人现有的水平,第一次选拔,甲、乙、丙三人合格的概率依次为,,。第二次选拔,甲、乙、丙三人合格的概率依次为,,。 (1)求第一次选拔后甲、乙两人中只有甲合格的概率; (2)分别求出甲、乙、丙三人经过前后两次选拔后合格的概率; (3)设甲、乙、丙经过前后两次选拔后恰有两人合格的的概率;
三.解答题:本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤. 17. (本题满分10分) 已知函数, (1)求函数的最小正周期; (2)在中,已知为锐角,,,求边的长.
在直角梯形ABCD中, A为PD的中点,如下图, 将△PAB沿AB折到△SAB的位置,使SB⊥BC,点E在SD上, (1)求证:SA⊥平面ABCD; (2)求二面角E-AC-D的余弦值; (3)在线段BC上是否存在点F,使SF//平面EAC?若存在,确定F点的位置,若不存在,请说明理由?
已知过点P(-2,-2)作圆x2+y2+Dx-2y-5=0的两切线关于直线x-y=0对称, 设切点分别有A、B,求直线AB的方程.
在三棱锥P-ABC内,已知PA=PC=AC=,AB=BC=1,面PAC⊥面ABC,E是BC的中点. (1)求直线PE与AC所成角的余弦值; (2)求直线PB与平面ABC所成的角的正弦值; (3)求点C到平面PAB的距离.