已知函数f(x)=x2+2ax+2,x∈[﹣5,5].(1)当a=﹣1时,求函数的最大值和最小值;(2)求实数a的取值范围,使y=f(x)在区间[﹣5,5]上是单调函数.
已知函数f(x)=x3+ax2+bx. (1)若a=2b,试问函数f(x)能否在x=-1处取到极值?若有可能,求出实数a,b的值;否则说明理由. (2)若函数f(x)在区间(-1,2),(2,3)内各有一个极值点,试求w=a-4b的取值范围.
某化工企业2012年底投入100万元购入一套污水处理设备.该设备每年的运转费用是0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元.设该企业使用该设备x年的年平均污水处理费用为y(单元:万元). (1)用x表示y; (2)当该企业的年平均污水处理费用最低时,企业需重新更换新的污水处理设备.求该企业几年后需要重新更换新的污水处理设备.
设集合A为函数y=ln(-x2-2x+8)的定义域,集合B为函数y=x+的值域,集合C为不等式 (x+4)≤0的解集. (1)求A∩B; (2)若C⊆∁RA,求a的取值范围.
已知函数f(x)=+a,g(x)=aln x-x(a≠0). (1)求函数f(x)的单调区间; (2)求证:当a>0时,对于任意x1,x2∈,总有g(x1)<f(x2)成立.
已知a>0,函数f(x)=ax2-ln x. (1)求f(x)的单调区间; (2)当a=时,证明:方程f(x)=f 在区间(2,+∞)上有唯一解.