(本小题满分12分)设函数,曲线过点,且在点处的切线斜率为2.(1)求的值;(2)证明:
如图,直线AB为圆O的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于点D.(1)证明:DB=DC;(2)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径.
如图,梯形ABCD内接于⊙O,AD∥BC,过点C作⊙O的切线,交BD的延长线于点P,交AD的延长线于点E.(1)求证:AB2=DE·BC;(2)若BD=9,AB=6,BC=9,求切线PC的长.
如图,已知在△ABC中,AB=AC,D是△ABC外接圆劣弧上的点(不与点A,C重合),延长BD至E.(1)求证:AD的延长线平分∠CDE;(2)若∠BAC=30°,△ABC中BC边上的高为2+,求△ABC外接圆的面积.
如图,过圆O外一点M作它的一条切线,切点为A,过A点作直线AP垂直直线OM,垂足为P.(1)证明:OM·OP=OA2;(2)N为线段AP上一点,直线NB垂直直线ON,且交圆O于B点.过B点的切线交直线ON于K.证明:∠OKM=90°.
如图,AB为⊙O的直径,直线CD与⊙O相切于E,AD垂直CD于D,BC垂直CD于C,EF垂直AB于F,连接AE,BE.证明:(1)∠FEB=∠CEB;(2)EF2=AD·BC.