已知曲线的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是(为参数).(Ⅰ)求曲线的直角坐标方程与直线的普通方程;(Ⅱ)设点,若直线与曲线交于,两点,且,求实数的值.
已知函数,其中,在及处取得极值,其中. (1)求证:; (2)求证:点的中点在曲线上.
已知数列中,. (1)求数列的通项公式; (2)证明:.
设抛物线的焦点为F,准线为,过点F作一直线与抛物线交于A、B两点,再分别过点A、B作抛物线的切线,这两条切线的交点记为P. (1)证明:直线PA与PB相互垂直,且点P在准线上; (2)是否存在常数,使等式恒成立?若存在,求出的值;若不存在,说明理由.
已知数列的前项和为,,且. (1)计算; (2)猜想的表达式,并证明.
在直四棱柱ABCD—A1B1C1D1中,已知底面四边形 ABCD是边长为3的菱形,且DB=3,A1A=2,点E 在线段BC上,点F在线段D1C1上,且BE=D1F=1. (1)求证:直线EF∥平面B1D1DB; (2)求二面角F—DB—C的余弦值.