设函数.(1)当时,求函数的定义域;(2)若函数的定义域为,试求的取值范围.
数列的前项和为,且.(1)求数列的通项公式;(2)若数列满足:,求数列的通项公式;(3)令,求数列的前 项和.
已知命题:函数在[-2,2]内有且仅有一个零点.命题:在区间[]内有解.若命题“且”是假命题,求实数的取值范围.
已知锐角中内角、、所对边的边长分别为、、,满足,且.(Ⅰ)求角的值;(Ⅱ)设函数,图象上相邻两最高点间的距离为,求的取值范围.
选修4-5:不等式选讲已知函数.(1)求不等式的解集;(2)若关于的不等式恒成立,求实数的取值范围.
选修4-4:坐标系与参数方程在直角坐标系中,直线的方程为,曲线的参数方程为(为参数).(1)已知在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以x轴正半轴为极轴)中,点的极坐标为,判断点与直线的位置关系;(2)设点为曲线上的一个动点,求它到直线的距离的最小值.