如图,抛物线经过点A(1,0),与y轴交于点B.(1)求抛物线的解析式;(2)P是y轴上一点,且△PAB是以AB为腰的等腰三角形,试求P点坐标.将抛物线沿着坐标轴方向经过怎样的一次平移可以使它使它经过原点.
已知,,(如图).是射线上的动点(点与点不重合),是线段的中点.(1)设,的面积为,求关于的函数关系式,并写出自变量的取值范围;(2)如果以线段为直径的圆与以线段为直径的圆外切,求线段的长;(3)连结,交线段于点,如果以为顶点的三角形与相似,求线段的长.
某电子科技公司开发一种新产品.产品投产上市一年来,公司经历了由初期的亏损到后来逐步盈利的过程(公司对经营的盈亏情况每月最后一天结算1次).公司前12个月累积获得的利润y(万元)与销售时间第x(月)之间的函数关系(即前x个月的利润总和y与x之间的关系)对应的点都在如图所示的图象上.该图象是某二次函数y=a(x-h)2+k图象的一部分,点A为抛物线的顶点,且点A,B,C的横坐标分别为4,10,12,点A,B的纵坐标分别为-16,20.(1)求前12个月该公司累积获得的利润y(万元)与时间第x(月)之间的函数关系式;(2)分别求出前9个月公司累积获得的利润和10月份一个月内所获得的利润;(3)在前12个月中,哪个月该公司一个月内所获得的利润最多?最多利润是多少万元?
在平面上有且只有4个点,这4个点中有一个独特的性质:连结每两点可得到6条线段,这6条线段有且只有两种长度.我们把这四个点称作准等距点.例如正方形ABCD的四个顶点(如图1),有AB=BC=CD=DA,AC=BD.其实满足这样性质的图形有很多,如图2中A、B、C、O四个点,满足AB=BC=CA,OA=OB=OC;如图3中A、B、C、O四个点,满足OA=OB=OC=BC,AB=AC.(1)如图,若等腰梯形ABCD的四个顶点是准等距点,且AD∥BC.①写出相等的线段(不再添加字母);②求∠BCD的度数.(2)请再画出一个四边形,使它的四个顶点为准等距点,并写出相等的线段.
在一次运输任务中,一辆汽车将一批货物从甲地运往乙地,到达乙地卸货后返回.设汽车从甲地出发x(h)时,汽车与甲地的距离为y(km),y与x的函数关系如图所示.解答下列问题:(1)这辆汽车的往、返速度是否相同?请说明理由;(2)求这辆汽车从甲地出发4h时与甲地的距离.
函数的图象如图所示.(1)()是第一象限内图象上的点,且都是整数.求出所有的点;(2)若P(m,y1),Q(-3,y2)是函数图象上的两点,且y1> y2,求实数m的取值范围.