某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.(1)现该商场要保证每天盈利6 000元,同时又要顾客得到实惠,那么每千克应涨价多少元?(2)若该商场单纯从经济角度看,每千克这种水果涨价多少元,能使商场获利最多?
如图,四边形ABCD是菱形,CE⊥AB交AB延长线于E,CF⊥AD交AD延长线于F, 求证:CE=CF。
化简求值,其中
计算:(1) (2)
如图,已知在等腰直角三角形中,, 平分,与相交于点,延长到,使, (1)求证:; (2)延长交于,且,求证:; (3)在⑵的条件下,若是边的中点,连结与相交于点. 试探索,,之间的数量关系,并证明你的结论.
利用“等积”计算或说理是一种很巧妙的方法, 就是一个面积从两个不同的角度表示。如图甲,已知Rt△ABC中,∠C=90°,CD⊥AB于D,BC=3,AC=4,求CD的长。 解题思路:利用勾股定理易得AB=5利用,可得到CD=2.4 请你利用上述方法解答下面问题: (1)如图甲,已知Rt△ABC中,∠C=90°,CD⊥AB于D,BC=5,AC=12,求CD的长。 (2)如图乙,△ABC是边长为2的等边三角形,点D是BC边上的 任意一点,DE⊥AB于E点,DF⊥AC于F点,求DE+DF的值