已知圆的圆心在轴上,半径为2,直线被圆截得的弦长为,且圆心在直线的上方.(1)求圆的方程;(2)设,(2≤t≤4),若圆是的内切圆,求边所在直线的斜率(用表示)(3)在(2)的条件下求的面积S的最大值及对应的值.
已知f(x)=ax3+bx2+cx(a≠0)在x=1和x=-1时取得极值,且f(1)=-1.(1)试求常数a、b、c的值;(2)试求f(x) 的单调区间;(3) 试判断x=±1时函数取极小值还是极大值,并说明理由.
已知某长方体的棱长之和为14.8m,长方体底面的一边比另一边长0.5m,问高为多少时长方体体积最大?并求出最大体积是多少?
已知函数f(x)和g(x)的图象关于原点对称,且f(x)=x2+2x. (Ⅰ)求函数g(x)的解析式; (Ⅱ)若h(x)=g(x)-mf(x)在[-1,1]上是增函数,求实数m的取值范围.
已知集合A={x|x≥|x2-2x|,B={x|},C={x|ax2+x+b<0,(1)求A∪B,A∩B(2)如果(A∪B)∩C=φ,A∪B∪C=R,求实数a、b的值.
求函数的定义域和值域