设集合(1)化简集合,并求当时,的真子集的个数.(2)若,求实数的取值范围.
某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:
(1)由表中数据直观分析,收看新闻节目的观众是否与年龄有关? (2)用分层抽样方法在收看新闻节目的观众中随机抽取5名,大于40岁的观众应该抽取几名? (3)在上述抽取的5名观众中任取2名,求恰有1名观众的年龄为20至40岁的概率.
设函数 f x = 3 sin ω x + π 6 , ω > 0 , x ∈ - ∞ , + ∞ ,且以 π 2 为最小正周期. (1)求 f 0 ; (2)求 f x 的解析式; (3)已知 f α 4 + π 12 = 9 5 ,求 sin α 的值.
已知函数 f ( x ) = x , g ( x ) = a ln x , a ∈ R . (Ⅰ)若曲线 y = f ( x ) 与曲线 y = g ( x ) 相交,且在交点处有相同的切线,求 a 的值及该切线的方程; (Ⅱ)设函数 k ( x ) = f ( x ) - g ( x ) ,当 k ( x ) 存在最小值时,求其最小值 φ ( a ) 的解析式; (Ⅲ)对(Ⅱ)中的 φ ( a ) ,证明:当 a ∈ ( 0 , + ∞ ) 时, φ ( a ) ≤ 1 .
如图,椭圆 C : x 2 a 2 + y 2 b 2 = 1 的顶点为 A 1 , A 2 , B 1 , B 2 ,焦点为 F 1 , F 2 , A 1 B 1 = 7 , S B 1 A 1 B 2 A 2 = 2 S B 1 F 1 B 2 F 2 .
(Ⅰ)求椭圆 C 的方程; (Ⅱ)设 n 为过原点的直线, l 是与 n 垂直相交于 P 点,与椭圆相交于 A , B 两点的直线, O P ⇀ = 1 .是否存在上述直线 l 使 O A ⇀ · O B ⇀ = 0 成立?若存在,求出直线 l 的方程;并说出;若不存在,请说明理由.
为了解学生身高情况,某校以 10 % 的比例对全校 700 名学生按性别进行分层抽样检查,测得身高情况的统计图如下:
(Ⅰ)估计该校男生的人数; (Ⅱ)估计该校学生身高在 170 ~ 185 c m 之间的概率; (Ⅲ)从样本中身高在 180 ~ 190 c m 之间的男生中任选 2 人,求至少有 1 人身高在 185 ~ 190 c m 之间的概率.