已知椭圆C:的焦距为4,其长轴长和短轴长之比为.(Ⅰ)求椭圆C的标准方程;(Ⅱ)设F为椭圆C的右焦点,T为直线上纵坐标不为0的任意一点,过F作TF的垂线交椭圆C于点P,Q.(ⅰ)若OT平分线段PQ(其中O为坐标原点),求的值;(ⅱ)在(ⅰ)的条件下,当最小时,求点T的坐标.
如图,已知在侧棱垂直于底面的三棱柱中,,点是的中点。 (1)求证: (2)求与平面所成的角的正切值
已知圆,直线 (1)求证:直线恒过定点 (2)判断直线被圆截得的弦长何时最短?并求截得的弦长最短时的值及最短长度。
已知集合A=,B=. (1) 若,求实数的取值范围; (2) 若,求实数的取值范围.
定义在上的奇函数,当时, (1)求在上的解析式; (2)判断在上的单调性,并给予证明; (3)当时,关于的方程有解,试求实数的取值范围.
(本小题满分12) 为了绿化城市,准备在如图所示的区域内修建一个矩形的草坪,并建立如图平面直角坐标系,且,,另外的内部有一文物保护区不能占用,经测量,, ,. (1)求直线的方程; (2)应如何设计才能使草坪的占地面积最大?并求最大面积。