已知椭圆C:的焦距为4,其长轴长和短轴长之比为.(Ⅰ)求椭圆C的标准方程;(Ⅱ)设F为椭圆C的右焦点,T为直线上纵坐标不为0的任意一点,过F作TF的垂线交椭圆C于点P,Q.(ⅰ)若OT平分线段PQ(其中O为坐标原点),求的值;(ⅱ)在(ⅰ)的条件下,当最小时,求点T的坐标.
已知函数的图像上两相邻最高点的坐标分别为.(Ⅰ)求的值;(Ⅱ)在△ABC中,分别是角A,B,C的对边,且求的取值范围.
已知函数,其中为正常数.(Ⅰ)求函数在上的最大值;(Ⅱ)设数列满足:,,(1)求数列的通项公式;(2)证明:对任意的,;(Ⅲ)证明:.
已知椭圆的中心在坐标原点O, 焦点在x轴上, 椭圆的短轴端点和焦点所组成的四边形为正方形, 两准线间的距离为4. (Ⅰ)求椭圆的方程;(Ⅱ)直线过点P(0, 2)且与椭圆相交于A.、B两点,当△AOB面积取得最大值时, 求直线的方程.
某市城调队就本地居民的月收入调查了10000人, 并根据所得数据画出了样本的频率分布直方图(每个分组包括左端点, 不包括右端点, 如第一组表示收入在, 单位: 元).(Ⅰ)求随机抽取一位居民,估计该居民月收入在的概率,并估计这10000人的人均月收入;(Ⅱ)若将频率视为概率,从本地随机抽取3位居民(看作有放回的抽样),求月收入在上居民人数的数学期望.
如图1,在Rt中,,,D、E分别是上的点,且,将沿折起到的位置,使,如图2.(Ⅰ)求证:平面平面;(Ⅱ)若,求与平面所成角的余弦值;(Ⅲ)当点在何处时,的长度最小,并求出最小值.