二次函数满足且.(1)求的解析式;(2)求在区间上的最大值与最小值.
如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求B点在AM上,D点在AN上,且对角线MN过C点,已知|AB|=3米,|AD|=2米(1)要使矩形AMPN的面积大于32平方米,则AN的长度应在什么范围内? (2)当AN的长度是多少时,矩形AMPN的面积最小?并求出最小值
设函数的最大值为,最小值为,其中.(1)求、的值(用表示);(2)已知角的顶点与平面直角坐标系中的原点重合,始边与轴的正半轴重合,终边经过点.求的值.
已知向量m=(2sinx,cosx),n=(cosx,2cosx),定义函数f(x)=m·n-1. (1)求函数f(x)的最小正周期; (2)确定函数f(x)的单调区间、对称轴与对称中心.
如图,已知抛物线的焦点为F过点的直线交抛物线于A,B两点,直线AF,BF分别与抛物线交于点M,N (1)求的值;(2)记直线MN的斜率为,直线AB的斜率为 证明:为定值
如图,三棱锥P ABC中,已知PA⊥平面ABC,△ABC是边长为2的正三角形,D,E分别为PB,PC中点 (1)若PA=2,求直线AE与PB所成角的余弦值;(2)若PA,求证:平面ADE⊥平面PBC