某村电费收取有以下两种方案供农户选择:方案一:每户每月收管理费2元,月用电不超过30度时,每度0.5元,超过30度时,超过部分按每度0.6元收取.方案二:不收管理费,每度0.58元.(1)求方案一收费元与用电量(度)间的函数关系;(2)老王家九月份按方案一交费35元,问老王家该月用电多少度?(3)老王家月用电量在什么范围时,选择方案一比选择方案二更好?
(本小题满分12分)如图,在多面体中,平面,,且是边长为2的等边三角形,与平面所成角的正弦值为.(Ⅰ)在线段上存在一点F,使得面,试确定F的位置;(Ⅱ)求二面角的平面角的余弦值.
(本小题满分12分)为了解今年某校高三毕业班准备报考飞行员学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前个小组的频率之比为,其中第小组的频数为.(1)求该校报考飞行员的总人数;(2)以这所学校的样本数据来估计全省的总体数据,若从全省报考飞行员的同学中(人数很多)任选三人,设X表示体重超过60公斤的学生人数,求X的分布列和数学期望.
(本小题满分12分)在锐角中,三个内角所对的边依次为.设,,,.(Ⅰ)若,求的面积; (Ⅱ)求b+c的最大值.
.(本小题满分14分)已知数列,,其中是方程的两个根.(1)证明:对任意正整数,都有;(2)若数列中的项都是正整数,试证明:任意相邻两项的最大公约数均为1;(3)若,证明:。
.(本小题满分14分)已知椭圆的左焦点为,离心率e=,M、N是椭圆上的动点。(Ⅰ)求椭圆标准方程;(Ⅱ)设动点P满足:,直线OM与ON的斜率之积为,问:是否存在定点,使得为定值?,若存在,求出的坐标,若不存在,说明理由。(Ⅲ)若在第一象限,且点关于原点对称,点在轴上的射影为,连接 并延长交椭圆于点,证明:;