已知定义在区间上的偶函数.(Ⅰ)当时,有,求的解析式;(Ⅱ)当时,单调递减,且恒成立,求实数的取值范围.
如图, 已知四边形和均为直角梯形,∥,∥,且,平面⊥平面, (Ⅰ)证明:平面; (Ⅱ)求平面和平面所成锐二面角的余弦值.
已知数列的前项和为,若(),且. (Ⅰ)求证:数列为等差数列; (Ⅱ)设,数列的前项和为,证明:().
在锐角中,分别为角所对的边,且 (Ⅰ)确定角的大小; (Ⅱ)若,且的面积为,求的值.
选修4-5:不等式选讲 设函数. (Ⅰ)解不等式; (Ⅱ)若对一切实数均成立,求实数的取值范围.
选修4—4:坐标系与参数方程 平面直角坐标系中,直线的参数方程是(为参数),以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,已知曲线的极坐标方程为. (Ⅰ)求直线的极坐标方程; (Ⅱ)若直线与曲线相交于、两点,求.