如图,△ABC与△DEF是两个全等的等腰直角三角形,∠BAC=∠D=90°,AB=AC=.现将△DEF与△ABC按如图所示的方式叠放在一起.现将△ABC保持不动,△DEF运动,且满足:点E在边BC上运动(不与B、C重合),且边DE始终经过点A,EF与AC交于M点.请问:在△DEF运动过程中,△AEM能否构成等腰三角形?若能,请求出BE的长;若不能,请说明理由.
电瓶厂投资2000万元安装了电动自行车电瓶流水线,生产的电瓶成本为40元只,设销售单价为元(),年销售量为万件,年获利为(万元).经过市场调研发现:当100元时,20万件.当100200元时,在100元的基础上每增加1元,将减少0.1万件;当200250元时,在200元的基础上每增加1元,将减少0.2万件.(年获利年销售额-生产成本-投资)当=180时,= ▲ 万元;当=240时,= ▲ 万件求与的函数关系式;当为何值时,第一年的年获利亏损最少?
如图,一根电线杆AB和一块半圆形广告牌在太阳照射下,顶端A的影子刚好落在半圆形广告牌的最高处G,而半圆形广告牌的影子刚好落在地面上一点E.已知BC=5米,DE=2米,半圆的直径CD=6米.求线段EF的长求电线杆AB的高度
如图,已知⊙O是△ABC的外接圆,AB是⊙O的直径,D是AB延长线上的一点,AE⊥CD交DC的延长线于E,CF⊥AB于F,且CE=CF.求证:DE是⊙O的切线;若AB=6,BD=3,求AE和BC的长.
如图,吴老师不小心把墨水滴在了3个班学生捐款金额的统计表上,只记得:三个班的捐款总金额是7700元,2班的捐款金额比3班的捐款金额多300元.
求2班、3班的捐款金额若1班学生平均每人捐款的金额大于48元,小于51元.求1班的学生人数.
小亮、小芳和两个陌生人甲、乙同在如图所示的地下车库等电梯,两个陌生人可在1至4层的任意一层出电梯求甲、乙二人在同一层楼出电梯的概率约定“若甲、乙在同一层或相邻楼层出电梯,则小亮胜,否则小芳胜”.该约定是否公平?若公平,说明理由;若不公平,修改成公平约定