如图,四边形为菱形,,平面,为中点.(Ⅰ)求证:平面平面;(Ⅱ)求平面与平面所成二面角(锐角)的余弦值.
求展开式中的常数项.
已知各项均为正数的两个无穷数列、满足. (Ⅰ)当数列是常数列(各项都相等的数列),且时,求数列的通项公式; (Ⅱ)设、都是公差不为0的等差数列,求证:数列有无穷多个,而数列惟一确定; (Ⅲ)设,,求证:.
已知是实数,函数,和,分别是的导函数,若在区间上恒成立,则称和在区间上单调性一致. (Ⅰ)设,若函数和在区间上单调性一致,求实数的取值范围; (Ⅱ)设且,若函数和在以为端点的开区间上单调性一致,求的最大值.
如图,已知椭圆的上、下顶点分别为,点在椭圆上,且异于点,直线与直线分别交于点, (Ⅰ)设直线的斜率分别为,求证:为定值; (Ⅱ)求线段的长的最小值; (Ⅲ)当点运动时,以为直径的圆是否经过某定点?请证明你的结论.
某商场在店庆一周年开展“购物折上折活动”:商场内所有商品按标价的八折出售,折后价格每满500元再减100元.如某商品标价为1500元,则购买该商品的实际付款额为1500×0.8-200=1000(元).设购买某商品得到的实际折扣率.设某商品标价为元,购买该商品得到的实际折扣率为. (Ⅰ)写出当时,关于的函数解析式,并求出购买标价为1000元商品得到的实际折扣率; (Ⅱ)对于标价在[2500,3500]的商品,顾客购买标价为多少元的商品,可得到的实际折扣率低于?