设函数.(1)若存在最大值,且,求的取值范围;(2)当时,试问方程是否有实数根,若有,求出所有实数根;若没有,请说明理由.
(本小题满分10分) 已知P(3,2),一直线过点P, ①若直线在两坐标轴上截距之和为12,求直线的方程; ②若直线与x、y轴正半轴交于A、B两点,当面积为12时求直线的方程.
如图,四棱锥S—ABCD的底面为正方形,SD底面ABCD,则下列结论中不正确的是()
张华同学上学途中必须经过四个交通岗,其中在岗遇到红灯的概率均为,在岗遇到红灯的概率均为.假设他在4个交通岗遇到红灯的事件是相互独立的,X表示他遇到红灯的次数. (1)若,就会迟到,求张华不迟到的概率; (2)求EX.
甲、乙、丙三名射击选手,各射击一次,击中目标的概率如下表所示:
若三人各射击一次,恰有k名选手击中目标的概率记为. (1)求X的分布列; (2)若击中目标人数的均值是2,求P的值.
掷3枚均匀硬币一次,求正面个数与反面个数之差X的分布列,并求其均值。