某风景区在一个直径AB为100米的半圆形花园中设计一条观光线路(如图所示).在点A与圆弧上的一点C之间设计为直线段小路,在路的两侧边缘种植绿化带;从点C到点B设计为沿弧BC的弧形小路,在路的一侧边缘种植绿化带.(注:小路及绿化带的宽度忽略不计)(Ⅰ)设(弧度),将绿化带总长度表示为的函数;(Ⅱ)试确定的值,使得绿化带总长度最大.
设函数.(Ⅰ)求的单调区间;(Ⅱ)若,且在区间内存在极值,求整数的值.
某高校组织的自主招生考试,共有1000名同学参加笔试,成绩均介于60分到100分之间,从中随机抽取50名同学的成绩进行统计,将统计结果按如下方式分为4组:第1组[60,70),第2组[70,80),第3组[80,90),第4组[90,100].如图是按上述分组方法得到的频率分布直方图,且笔试成绩在85分(含85分)以上的同学有面试资格.(Ⅰ)估计所有参加笔试的1000名同学中,有面试资格的人数;(Ⅱ)已知某中学有甲、乙两位同学取得面试资格,且甲的笔试比乙的高;面试时,要求每人回答两个问题,假设甲、乙两人对每一个问题答对的概率均为;若甲答对题的个数不少于乙,则甲比乙优先获得高考加分资格.求甲比乙优先获得高考加分资格的概率.
如图,平面凸多面体的体积为,为的中点.(Ⅰ)求证:平面;(Ⅱ)求证:平面平面.
已知点是函数的图象上一点,数列的前n项和.(Ⅰ)求数列的通项公式;(Ⅱ)将数列前2013项中的第3项,第6项, ,第3k项删去,求数列前2013项中剩余项的和.
已知函数的最小正周期为.(Ⅰ)求的值;(Ⅱ)求函数在区间上的值域.