以平面直角坐标系的原点为极点,轴正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,设点的极坐标为,直线过点且与极轴成角为,圆的极坐标方程为.(1)写出直线参数方程,并把圆的方程化为直角坐标方程;(2)设直线与曲线圆交于、两点,求的值.
已知函数f(x)=x3-x2++. 证明:存在x0∈,使f(x0)=x0.
已知f(x)=logax(a>0且a≠1),如果对于任意的x∈都有|f(x)|≤1成立,试求a的取值范围.
设f(x)=loga(1+x)+loga(3-x)(a>0,a≠1),且f(1)=2. (1)求a的值及f(x)的定义域. (2)求f(x)在区间上的最大值.
已知函数f(x)=3x-. (1)若f(x)=2,求x的值; (2)判断x>0时,f(x)的单调性; (3)若3tf(2t)+mf(t)≥0对于t∈恒成立,求m的取值范围.
设a>0且a≠1,函数y=a2x+2ax-1在[-1,1]上的最大值是14,求a的值.