已知中心在原点,焦点在轴上,离心率为的椭圆过点(1)求椭圆的方程;(2)设不过原点的直线与该椭圆交于两点,满足直线的斜率依次成等比数列,求面积的取值范围.
已知函数,a,b为常数,(1) 若曲线%在点(2, 0)处有相同的切线,求a,b的值;(2) 当且时,函数在上有最小值,求实数a的取值范围.
已知数列的前n项和,数列满足b1=1,(1) 求数列的通项公式;(2) 设,求数列的前n项和
已知圆的半径为1,圆心C在直线上,其坐标为整数,圆C截直线所得的弦长为(1) 求圆C的标准方程;(2) 设动点P在直线上,过点P作圆的两条切线PA,PB切点分别为A,B,求四边形PACB面积的最小值.
已知函数的反函数为,且(1)求a的值;(2)若,是数列的前n项和,若不等式对任意恒成立,求实数的最大值.
已知向量,函数—且最小正周斯为,(1) 求函数,的最犬值,并写出相应的x的取值集合;(2)在中角A,B,C所对的边分别为a,b,c且,求b的值.