已知函数,且。(Ⅰ)求的值;(Ⅱ)判断并证明函数在区间上的单调性.
已知函数,在处的切线与直线垂直,函数.(1)求实数的值;(2)设是函数的两个极值点,若,求的最小值.
设函数.(1)若函数是定义域上的单调函数,求实数的取值范围;(2)若,试比较当时,与的大小;(3)证明:对任意的正整数,不等式成立.
如图,多面体中,四边形是边长为的正方形,,且,,.(Ⅰ)求证:平面垂直于平面;(Ⅱ)若分别为棱和的中点,求证:∥平面;(Ⅲ)求多面体的体积.
数列的前项和为,且.(1)求数列的通项公式;(2)若数列满足:,求数列的通项公式;(3)令,求数列的前 项和.
已知命题:函数在[-2,2]内有且仅有一个零点.命题:在区间[]内有解.若命题“且”是假命题,求实数的取值范围.