如图,抛物线经过点(1,﹣4)和(﹣2,5),请解答下列问题:(1)求抛物线的解析式;(2)若与x轴的两个交点为A,B,与y轴交于点C.在该抛物线上是否存在点D,使得△ABC与△ABD全等?若存在,求出D点的坐标;若不存在,请说明理由.注:抛物线的对称轴是.
如图,将正方形ABCD中的△ABD绕对称中心O旋转至△GEF的位置,EF交AB于M,GF交BD于N.请猜想BM与FN有怎样的数量关系?并证明你的结论.
计算:。
如图,点P在平行四边形ABCD的CD边上,连结BP并延长与AD的延长线交于点Q. (1)求证:△DQP∽△CBP; (2)当△DQP≌△CBP,且AB=8时,求DP的长.
如图,已知AB是⊙O的直径,直线CD与⊙O相切于点C,AC平分∠DAB. (1)求证:AD⊥CD; (2)若AD=2,AC=,求AB的长.
已知二次函数的图象经过点A(3,0),B(2,-3),C(0,-3). (1)求此函数的解析式及图象的对称轴; (2)点P从B点出发以每秒0.1个单位的速度沿线段BC向C点运动,点Q从O点出发以相同的速度沿线段OA向A点运动,其中一个动点到达端点时,另一个也随之停止运动.设运动时间为t秒. ①当t为何值时,四边形ABPQ为等腰梯形; ②设PQ与对称轴的交点为M,过M点作x轴的平行线交AB于点N,设四边形ANPQ的面积为S,求面积S关于时间t的函数解析式,并指出t的取值范围;当t为何值时,S有最大值或最小值.