如图,BC是⊙O的直径,点A在⊙O上,AD⊥BC,垂足为D,弧AE=弧 AB,BE分别交AD、AC于点F、G.(1)判断△FAG的形状,并说明理由;(2)若点E和点A在BC的两侧,BE、AC的延长线交于点G,AD的延长线交BE于点F,其余条件不变,(1)中的结论还成立吗?请说明理由.
为了绿化环境,育英中学八年级三班同学都积极参加植树活动,今年植树节时,该班同学植树情况的部分数据如图所示,请根据统计图信息,回答下列问题:
(1)八年级三班共有多少名同学?
(2)条形统计图中, m = , n = .
(3)扇形统计图中,试计算植树2棵的人数所对应的扇形圆心角的度数.
如图,已知 AB / / DE , AB = DE , BE = CF ,求证: AC / / DF .
抛物线 y = a x 2 + bx + c 过 A ( 2 , 3 ) , B ( 4 , 3 ) , C ( 6 , − 5 ) 三点.
(1)求抛物线的表达式;
(2)如图①,抛物线上一点 D 在线段 AC 的上方, DE ⊥ AB 交 AC 于点 E ,若满足 DE AE = 5 2 ,求点 D 的坐标;
(3)如图②, F 为抛物线顶点,过 A 作直线 l ⊥ AB ,若点 P 在直线 l 上运动,点 Q 在 x 轴上运动,是否存在这样的点 P 、 Q ,使得以 B 、 P 、 Q 为顶点的三角形与 ΔABF 相似,若存在,求 P 、 Q 的坐标,并求此时 ΔBPQ 的面积;若不存在,请说明理由.
已知 AB 是 ⊙ O 的直径, C 是圆上一点, ∠ BAC 的平分线交 ⊙ O 于点 D ,过 D 作 DE ⊥ AC 交 AC 的延长线于点 E ,如图①.
(1)求证: DE 是 ⊙ O 的切线;
(2)若 AB = 10 , AC = 6 ,求 BD 的长;
(3)如图②,若 F 是 OA 中点, FG ⊥ OA 交直线 DE 于点 G ,若 FG = 19 4 , tan ∠ BAD = 3 4 ,求 ⊙ O 的半径.
某网店销售甲、乙两种防雾霾口罩,已知甲种口罩每袋的售价比乙种口罩多5元,小丽从该网店网购2袋甲种口罩和3袋乙种口罩共花费110元.
(1)该网店甲、乙两种口罩每袋的售价各多少元?
(2)根据消费者需求,网店决定用不超过10000元购进甲、乙两种口罩共500袋,且甲种口罩的数量大于乙种口罩的 4 5 ,已知甲种口罩每袋的进价为22.4元,乙种口罩每袋的进价为18元,请你帮助网店计算有几种进货方案?若使网店获利最大,应该购进甲、乙两种口罩各多少袋,最大获利多少元?