如果二次函数的二次项系数为l,则此二次函数可表示为y=x2+px+q,我们称[p,q]为此函数的特征数,如函数y=x2+2x+3的特征数是[2,3].(1)若一个函数的特征数为[﹣2,1],求此函数图象的顶点坐标.(2)探究下列问题:①若一个函数的特征数为[4,﹣1],将此函数的图象先向右平移1个单位,再向上平移1个单位,求得到的图象对应的函数的特征数.②若一个函数的特征数为[2,3],问此函数的图象经过怎样的平移,才能使得到的图象对应的函数的特征数为[3,4]?
若多项式的值与x的取值无关,求m的值.
解方程: (1) (2) (3) (4)
合并同类项: (1) (2)
已知正方形ABCD的边长为4cm,有一动点P以1cm/s的速度沿A—B—C—D的路径运动,设P点运动的时间为(s)(0<<12),△ADP的面积为cm2. (1)求与的函数关系式; (2)在给定的平面直角坐标系中画出上述函数关系的图象; (3)点P运动多长时间时,△ADP是等腰三角形(只写结果).
在平面直角坐标系中,点P从原点O出发,每次向上平移2个单位长度或向右平移1个单位长度. 实验操作 在平面直角坐标系中描出点P从点O出发,平移1次后,2次后,3次后可能到达的点,并把相应点的坐标填写在表格中. 观察思考 任一次平移,点P可能到达的点在我们学过的一次函数的图像上,如:平移1次后点P在函数_______________的图像上;平移2次后点P在函数_________________的图像上 规律发现:由此我们知道,平移n次后点P在函数__________________的图像上(请填写相应的解析式)