已知等比数列的公比,且,. (Ⅰ)求公比和的值; (Ⅱ)若的前项和为,求证.
. (满分12分) 已知函数图象上一点处的切线方程 为. 1)求的值; 2)若方程在内有两个不等实根,求的取值范围(其中为自然对数的底数); 3)令,若的图象与轴交于,(其中),的中点为,求证:在处的导数
.椭圆>>与直线交于、两点,且,其 中为坐标原点。 1)求的值; 2)若椭圆的离心率满足,求椭圆长轴的取值范围。
..(满分12分) 已知二次函数的图像经过坐标原点,其导函数为,数列的前项和为,点均在函数的图像上。 1)求数列的通项公式; 2)设,是数列的前项和,求使得对所有都成立的最小正整数。
. (满分12分)定义在上的函数满足,且,当时,。1)求在上的解析式; 2)若在上是减函数,求函数在上的值域。
(满分12分) 在中,分别是角的对边,且。 1)求的大小; 2)若,,求的面积。