如图四边形ABCD内接于⊙O ,BD是⊙O 的直径,AE⊥CD,垂足为E,DA平分∠BDE.(1)求证:AE是⊙O 的切线;(2)若∠DBC=30°,DE=1cm,求BD的长.
如图,点D是线段AB的中点,点C是线段AB的垂直平分线上的任意一点,DE⊥AC于点E,DF⊥BC于点F.(1)求证:CE=CF;(2)点C运动到什么位置时,四边形CEDF成为正方形?请说明理由.
⑴ 解方程:=-3 ⑵ 解不等式组:
计算:(1)(-3)2-+(-1)0+(2)
如图,已知二次函数y=a(x2-6x+8)(a>0)的图象与x轴交于点A、B两点,与y轴交于点C.(1)求A、B两点的坐标;(2)若S△ABC=8,则过A、B、C三点的圆是否与抛物线有第四个交点D?若存在,求出D点坐标;若不存在,说明理由.(3)将△OAC沿直线AC翻折,点O的对应点为O'.①若O'落在该抛物线的对称轴上,求实数a的值;②是否存在正整数a,使得点O'落在△ABC的内部,若存在,求出整数a的值;若不存在,请说明理由.
如图,在平面直角坐标中,点A的坐标为(1,1),OA=AC,∠OAC=90°,点D为x轴上一动点.以AD为边在AD的右侧作正方形ADEF.(1)当点D在线段OC上时(不与点O、C重合),则线段CF与OD之间的数量关系为 ;位置关系为 , (2)当点D在线段OC的延长线上时,(1)中的结论是否成立?若成立,请说明理由;若不成立,请举一反例;(3)设D点坐标为(t,0),当D点从O点运动到C点时,用含t的代数式表示E点坐标,并直接写出E点所经过的路径长.