某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿场售价与上市时间的关系用图一的一条折线表示;西红柿的种植成本与上市时间的关系用图二的抛物线段表示。(Ⅰ)写出图一表示的市场售价与时间的函数关系式;写出图二表示的种植成本与时间的函数关系式;(Ⅱ)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?(注:市场售价各种植成本的单位:元/102㎏,时间单位:天)
(本题满分13分) 已知函数,数列满足,. (Ⅰ)求数列的通项公式; (Ⅱ)求; (Ⅲ)求证:
(本题满分13分) 已知函数,. (1)当时,若上单调递减,求a的取值范围; (2)求满足下列条件的所有整数对:存在,使得的最大值,的最小值;
(本题满分13分已知数列是公比为的等比数列,且成等差数列. (Ⅰ) 求的值; (Ⅱ) 设数列是以2为首项,为公差的等差数列,其前项和为, 试比较与的大小.
(本题满分13分)已知函数满足且对于任意, 恒有成立. (1) 求实数的值; (2) 解不等式.
(本小题满分12分) (Ⅰ)小问7分,(Ⅱ)小问5分.) 已知O为坐标原点,向量=(sinα,1),=(cosα,0),=(-sinα,2),点P是直线AB上的一点,且点B分有向线段的比为1. (1)记函数f(α)=·,α∈,讨论函数f(α)的单调性,并求其值域; (2)若O、P、C三点共线,求|+|的值.