某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,为了扩大销售,尽快减少库存,商场决定采取适当降价措施,经调查发现,如果每件衬衫每降价一元,商场平均每天可多售出2件.若商场平均每天赢利1200元,每件衬衫应降价多少元?
在“全校读书月”活动中,小明调查了班级里40名同学本学期计划购买课外书的花费情况,并将结果绘制成如图所示的统计图.请根据相关信息,解答下列问题:(直接填写结果) (1)这次调查获取的样本数据的众数是 ; (2)这次调查获取的样本数据的中位数是 ; (3)若该校共有学生2400人,根据样本数据,估计本学期计划购买课外书花费50元的学生有多少人?
解方程: (1) (2) (3)(配方法) (4)
(本题10分)如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“和谐数”。如,因此4,12,20这三个数都是和谐数。 (1)36和2016这两个数是和谐数吗?为什么? (2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的和谐数是4的倍数吗?为什么? (3)介于1到200之间的所有“和谐数”之和为 .
(本题9分)把几个图形拼成一个新的图形,再通过图形面积的计算,常常可以得到一些有用的式子,或可以求出一些不规则图形的面积. (1)如图1,是将几个面积不等的小正方形与小长方形拼成一个边长为a+b+c的正方形,试用不同的形式表示这个大正方形的面积,你能发现什么结论,请用等式表示出来。 (2)如图2,是将两个边长分别为a和b的正方形拼在一起,B、C、G三点在同一直线上,连接BD和BF,若两正方形的边长满足a+b=10,ab=20,请求出阴影部分的面积。
(本题8分)阅读下列解题过程,然后解题: 题目:已知(a、b、c互不相等),求x+y+z的值. 解:设,则x=k(a-b),y=k(b-c),z=k(c-a), ∴x+y+z=k(a-b+b-c+c-a)=k•0=0,∴x+y+z=0. 依照上述方法解答下列问题: