在平面直角坐标系中,点A的坐标是(0,3),点B在x轴上,将△AOB绕点A逆时针旋转90°得到△AEF,点O,B对应点分别是E,F.(1)若点B的坐标是(-4,0),请在图中画出△AEF,并写出点E,F的坐标;(2)点P为x轴上的一个动点,是否存在P使PA+PE的值最小?若不存在,请说明理由,若存在请求出点P的坐标.
已知:直线AB与直线CD相交于点O,∠BOC=45°. (1)如图1,若EO⊥AB,求∠DOE的度数; (2)如图2,若FO平分∠AOC,求∠DOF的度数.
甲、乙两家超市某种型号的微波炉售价都是580元,元旦期间两家超市都进行促销活动; 甲超市:所有商品八折销售; 乙超市:全场购物满500元送现金100元; 小王同学在哪家超市单独购买这种微波炉比较省钱,为什么?
填写适当的理由:如图,已知:AB∥ED,你能求出∠B+∠BCD+∠D的大小吗? 解:过点C画FC∥AB ∵AB∥ED( ) FC∥AB() ∴FC∥ED( ) ∴∠B+∠1=180° ∠D+∠2=180°( ) ∴∠B+∠1+∠D+∠2= °() 即:∠B+∠BCD+∠D=360°.
如图,线段AB、点C在正方形网格中. (1)画线段AC、BC; (2)延长线段AB到点D,使BD=AB; (3)过点C画直线CE⊥AB,垂足为E.
(1)化简:(22+3x﹣5)+(4﹣3x2﹣7x); (2)先化简,再求值:3(x2﹣3xy)﹣(3x2﹣4xy),其中x=2,y=﹣3.