已知椭圆C的离心率为,直线被以椭圆的短轴为直径的圆截得弦长为,抛物线以原点为顶点,椭圆的右焦点为焦点.(Ⅰ)求椭圆与抛物线的方程;(Ⅱ)已知,是椭圆上两个不同点,且⊥,判定原点到直线的距离是否为定值,若为定值求出定值,否则,说明理由.
如果n件产品中任取一件样品是次品的概率为,则认为这批产品中有件次品。某企业的统计资料显示,产品中发生次品的概率p与日产量n满足,有已知每生产一件正品可赢利a元,如果生产一件次品,非但不能赢利,还将损失元().(1)求该企业日赢利额的最大值;(2)为保证每天的赢利额不少于日赢利额最大值的50%,试求该企业日产量的取值范围。
已知集合(1)若,求实数m的值;(2)设全集为R,若,求实数m的取值范围。
等差数列的首项为23,公差为整数,且第6项为正数,从第7项起为负数。(1)求此数列的公差d;(2)当前n项和是正数时,求n的最大值。
已知在△ABC中,角A、B、C所对的边分别为。(1)求△ABC中的最大角;(2)求角C的正弦值。
已知是首项的递增等差数列,为其前项和,且.(1)求数列的通项公式;(2)设数列满足,为数列的前n项和.若对任意的,不等式恒成立,求实数的取值范围.