如图,、为椭圆的左、右焦点,、是椭圆的两个顶点,椭圆的离心率,.若在椭圆上,则点称为点的一个“好点”.直线与椭圆交于、两点,、两点的“好点”分别为、,已知以为直径的圆经过坐标原点.(Ⅰ)求椭圆的标准方程;(Ⅱ)的面积是否为定值?若为定值,试求出该定值;若不为定值,请说明理由.
甲乙两个同学进行定点投篮游戏,已知他们每一次投篮投中的概率均为,且各次投篮的结果互不影响.甲同学决定投5次,乙同学决定投中1次就停止,否则就继续投下去,但投篮次数不超过5次. (1)求甲同学至少有4次投中的概率; (2)求乙同学投篮次数的分布列和数学期望.
已知函数,若函数的图象恒在轴上方,求实数的取值范围.
在平面直角坐标系中,圆的参数方程为,以坐标原点为极点,轴的正半轴为极轴建立极坐标系.求: (1)圆的直角坐标方程; (2)圆的极坐标方程.
如图,⊙为四边形的外接圆,且,是延长线上一点,直线与圆相切. 求证:.
已知函数,其中m,a均为实数. (1)求的极值; (2)设,若对任意的,恒成立,求的最小值; (3)设,若对任意给定的,在区间上总存在,使得成立,求的取值范围.