如图,、为椭圆的左、右焦点,、是椭圆的两个顶点,椭圆的离心率,.若在椭圆上,则点称为点的一个“好点”.直线与椭圆交于、两点,、两点的“好点”分别为、,已知以为直径的圆经过坐标原点.(Ⅰ)求椭圆的标准方程;(Ⅱ)的面积是否为定值?若为定值,试求出该定值;若不为定值,请说明理由.
如图,三棱锥中,底面,,,为的中点,为的中点,点在上,且.(1)求证:平面;(2)求证:平面;(3)求三棱锥的体积.
文科班某同学参加广东省学业水平测试,物理、化学、生物获得等级和获得等级不是的机会相等,物理、化学、生物获得等级的事件分别记为、、,物理、化学、生物获得等级不是的事件分别记为、、.(1)试列举该同学这次水平测试中物理、化学、生物成绩是否为的所有可能结果(如三科成绩均为记为);(2)求该同学参加这次水平测试获得两个的概率;(3)试设计一个关于该同学参加这次水平测试物理、化学、生物成绩情况的事件,使该事件的概率大于,并说明理由.
在△中,角、、的对边分别为,若,且.(1)求的值; (2)若,求△的面积.
设,圆:与轴正半轴的交点为,与曲线的交点为,直线与轴的交点为.(1)用表示和;(2)求证:;(3)设,,求证:.
设,函数.(1) 若,求曲线在处的切线方程;(2)若无零点,求实数的取值范围;(3)若有两个相异零点,求证: .