选修4-1 几何证明选讲如图,是圆的直径,点在弧上,点为弧的中点,作于点,与交于点,与交于点.(1)证明:;(2)若,,求圆的半径.
已知向量,,函数 (1)若,求的值; (2)在锐角中,角的对边分别是,且满足, 求的取值范围.
已知三棱锥中,面,,,为上一点,,分别为的中点. (1)证明:; (2)求与平面所成角的大小.
(1)已知等差数列{an}的公差d > 0,且是方程的两根,求数列通项公式 (2)设,求数列{bn}的前n项和.
某中学的高二(1)班男同学有名,女同学有名,老师按照分层抽样的方法组建了一个人的课外兴趣小组. (1)求某同学被抽到的概率及课外兴趣小组中男、女同学的人数; (2)经过一个月的学习、讨论,这个兴趣小组决定选出两名同学做某项实验,方法是先从小组里选出名同学做实验,该同学做完后,再从小组内剩下的同学中选一名同学做实验,求选出的两名同学中恰有一名女同学的概率;
在平面直角坐标系中,以为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为,曲线的参数方程为(为参数,). (1)写出直线的直角坐标方程; (2)求直线与曲线的交点的直角坐标.