如图,每个小方格都是边长为1个单位 的小正方形,A、B、C三点都是格点(每个小方格的顶点叫格点),其中A(1,8),B(3,8),C(4,7). (1)若D(2,3),请在网格图中画一个格点△DEF,使△DEF ∽△ABC,且相似比为2∶1; (2)求△ABC中AC边上的高; (3)若△ABC外接圆的圆心为P,则点P的坐标为
解二元一次方程组: x - y = 1 ① x + y = 3 ② .
计算: tan 45 ° ﹣ 3 ﹣ 1 .
计算: ( ﹣ 2 ) × 0 + 5 .
如图是一个长为 400 m 的环形跑道,其中 A , B 为跑道对称轴上的两点,且 A , B 之间有一条 50 m 的直线通道.甲乙两人同时从 A 点出发,甲按逆时针方向以速度 v 1 沿跑道跑步,当跑到 B 点时继续沿跑道前进,乙按顺时针方向以速度 v 2 沿跑道跑步,当跑到 B 点时沿直线通道跑回 A 点处,假设两人跑步的时间足够长.求:
(1)如果 v 1 : v 2 = 3 : 2 ,那么甲跑了多少路程后,两人首次在 A 点处相遇;
(2)如果 v 1 : v 2 = 5 : 6 ,那么乙跑了多少路程后,两人首次在 B 点处相遇.
某校九年级(1)班 50 名学生参加 1 min 跳绳体育考试. 1 min 跳绳次数与频数经统计后绘制出下面的频数分布表( 60 ~ 70 表示为大于等于 60 并且小于 70 )和扇形统计图,(如图).
(1)求 m , n 的值;
(2)求该班 1 min 跳绳成绩在 80 分以上(含 80 分)的人数占全班人数的百分比;
(3)根据频数分布表估计该班学生 1 min 跳绳的平均分大约是多少?并说明理由.