如图:△ABC是边长为4的等边三角形,AB在X轴上,点C在第一象限,AC与Y轴交于点D,点A的坐标为(-1,0)(1)求 B、C、D三点的坐标;(2)抛物线经过B、C、D三点,求它的解析式;
先化简,再求值:﹣(3x2+3xy﹣)+(+3xy+),其中x=﹣,y=2.
3xy2﹣2(xy﹣x2y)+(3x2y﹣2xy2) 其中x=﹣4 y=.
如图,在某小区的休闲广场有一个正方形花园ABCD,为了便于观赏,要在AD、BC之间修一条小路,在AB、DC之间修另一条小路,使这两条小路等长.设计师给出了以下几种设计方案:①如图1,E是AD上一点,过A作BE的垂线,交BE于点O,交CD于点H,则线段AH、BE为等长的小路;②如图2,E是AD上一点,过BE上一点O作BE的垂线,交AB于点G,交CD于点H,则线段GH、BE为等长的小路;③如图3,过正方形ABCD内任意一点O作两条互相垂直的直线,分别交AD、BC于点E、F,交AB、CD于点G、H,则线段GH、EF为等长的小路;根据以上设计方案,解答下列问题:(1)你认为以上三种设计方案都符合要求吗?(2)要根据图1完成证明,需要证明△ ≌△ ,进而得到线段 = ;(3)如图4,在正方形ABCD外面已经有一条夹在直线AD、BC之间长为EF的小路,想在直线AB、DC之间修一条和EF等长的小路,并且使这条小路的延长线过EF上的点O,请画草图(加以论述),并给出详细的证明.
上海世博会开馆前,某礼品经销商预测甲、乙两种礼品能够畅销,用16500元购进了甲种礼品,用44000元购进了乙种礼品,由于乙种礼品的单价是甲种礼品单价的4倍,实际购得甲种礼品的数量比乙种礼品的数量多100个.(1)求购进甲、乙两种礼品的单价各多少元?(2)如果要求每件商品在销售时的利润为20%,那么甲、乙两种礼品每件的售价各是多少元?(3)在(2)的条件下,如果甲种礼品的进价降低了,但售价保持不变,从而使销售甲种礼品的利润率提高了5%,那么此时每个甲种礼品的进价是多少元?(直接写出结果)(利润=售价﹣进价,利润率=×100%.)
如图,在由边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上.请按要求完成下列各题:(1)画AD∥BC(D为格点),连接CD;(2)试判断△ABC的形状?请说明理由;(3)若E为BC中点,F为AD中点.四边形AECF是什么特殊的四边形?请说明理由.