如图,长方形纸片ABCD,AD∥BC,将长方形纸片折叠,使点D与点B重合,点C落在点C'处,折痕为EF,(1)求证:BE=BF.(2)若∠ABE=18°,求∠BFE的度数.(3)若AB=6,AD=8,求AE的长.
(本题6分)为了解某校九年级男生的体能情况,体育老师随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制成图1和图2两幅尚不完整的统计图.(1)本次抽测的男生有 人,抽测成绩的众数是 ;(2)请你将图1、图2补充完整;(3)若规定引体向上5次以上(含5次)为体能达标,则该校350名九年级男生中估计有多少人体能达标?
.△ABC在平面直角坐标系中的位置如图所示.A、B、C三点在格点上.(1)作出△ABC关于轴对称的△A1B1C1,并写出点C1的坐标;(2)作出△ABC关于原点O对称的△A2B2C2,并写出点C2的坐标.
已知:如图,在□ABCD中,点F在AB的延长线上,且BF=AB,连接FD,交BC于点E.(1)证明:△DCE≌△FBE;(2)若EC=3,求AD的长.
如图,抛物线y=-x2+bx+c与x轴交于A、B两点,与y轴交于点C,点O为坐标原点,点D为抛物线的顶点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=2,EF=3。(1)求抛物线所对应的函数解析式;(2)求△ABD的面积;(3)将△AOC绕点C逆时针旋转90°,点A对应点为点G,问点G是否在该抛物线上?请说明理由。
某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元。为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件。(1)若商场平均每天要盈利1200元,每件衬衫应降价多少元?(2)每件衬衫降价多少元,商场平均每天盈利最多?