已知抛物线的焦点为,准线为,过点的直线交抛物线于两点,过点作准线的垂线,垂足为,当点的坐标为时,为正三角形,则此时的面积为( )
设是函数()的两个极值点(1)若,求函数的解析式;(2)若,求的最大值。
如图,在直三棱柱中,,点是的中点。(1)求证:∥平面(2)如果点是的中点,求证:平面平面.
已知函数(1)求函数的最小值和最小正周期;(2)设△ABC的内角的对边分别为a,b,c且=,,若向量共线,求的值.
在某次测验中,有6位同学的平均成绩为75分.用表示编号为()的同学所得成绩,且前5位同学的成绩如下:70,76,72,70,72(1)求第6位同学的成绩,及这6位同学成绩的标准差;(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率.
已知数列是等差数列,且(1)求数列的通项公式 (2)令,求数列前n项和