选修4—5:不等式选讲设.(1)当时,解不等式;(2)若对任意恒成立,求实数的取值范围.
(12分)设集合A={x|-2-a<x<a,a>0},命题p:1∈A,命题q:2∈A.若p∨q为真命题,p∧q为假命题,求a的取值范围.
(12分)在△ABC中,角A、B、C所对的边分别为a、b、c,且b2+c2=a2+bc.(1)求角A的大小;(2)若sin B·sin C=sin2A,试判断△ABC的形状.
(14分)已知、是椭圆的左、右焦点,A是椭圆上位于第一象限内的一点,点B也在椭圆上,且满足为坐标原点),,若椭圆的离心率等于(1)求直线AB的方程; (2)若的面积等于,求椭圆的方程;(3)在(2)的条件下,椭圆上是否存在点M使得的面积等于?若存在,求出点M的坐标;若不存在,说明理由.
(14分)等比数列的首项,前n项和为,且且数列各项均为正数. (1)求的通项;(2)求的前n项和.
(14分)已知椭圆的中心在原点O,焦点在坐标轴上,直线y = x +1与该椭圆相交于P和Q,且OP⊥OQ,|PQ|=,求椭圆的方程