如图,在一个长AB=40m、宽BC=30m的长方形小操场上,王刚从A点出发,沿着A→B→C的路线以3m/s的速度跑向C地.当他出发4s后,张华有东西需要交给他,就从A地出发沿王刚走的路线追赶,当张华跑到距B地8m的D处时,他和王刚在阳光下的影子恰好重叠在同一条直线上.此时,A处一根电线杆在阳光下的影子也恰好落在对角线AC上.(1)求他们的影子重叠时,两人相距多少米(DE的长)?(2)求张华追赶王刚的速度是多少?
已知反比例函数(k为常数,k≠1).(Ⅰ)其图象与正比例函数y=x的图象的一个交点为P,若点P的纵坐标是2,求k的值;(Ⅱ)若在其图象的每一支上,y随x的增大而减小,求k的取值范围;(Ⅲ)若其图象的一支位于第二象限,在这一支上任取两点A(x1,y1)、B(x2,y2),当y1>y2时,试比较x1与x2的大小.
解不等式组
R M O 1 O 2 如图半径分别为 m , n ( 0 < m < n ) 的两圆 ⊙ O 1 和 ⊙ O 2 相交于 P , Q 两点,且点 P ( 4 , 1 ) ,两圆同时与两坐标轴相切, ⊙ O 1 与 x 轴, y 轴分别切于点 M ,点 N , ⊙ O 2 与x轴, y 轴分别切于点 R ,点 H . (1)求两圆的圆心 O 1 , O 2 所在直线的解析式; (2)求两圆的圆心 O 1 , O 2 之间的距离 d ; (3)令四边形 P O 1 Q O 2 的面积为 S 1 ,四边形RMO1O2的面积为 S 2 . 试探究:是否存在一条经过P,Q两点、开口向下,且在x轴上截得的线段长为 s 1 - s 2 2 d 的抛物线?若存在,请求出此抛物线的解析式;若不存在,请说明理由.
在长株潭建设两型社会的过程中,为推进节能减排,发展低碳经济,我市某公司以25万元购得某项节能产品的生产技术后,再投入100万元购买生产设备,进行该产品的生产加工.已知生产这种产品的成本价为每件20元.经过市场调研发现,该产品的销售单价定在25元到30元之间较为合理,并且该产品的年销售量y(万件)与销售单价x(元)之间的函数关系式为:.(年获利=年销售收入﹣生产成本﹣投资成本)(1)当销售单价定为28元时,该产品的年销售量为多少万件?(2)求该公司第一年的年获利W(万元)与销售单价x(元)之间的函数关系式,并说明投资的第一年,该公司是盈利还是亏损?若盈利,最大利润是多少?若亏损,最小亏损是多少?(3)第二年,该公司决定给希望工程捐款Z万元,该项捐款由两部分组成:一部分为10万元的固定捐款;另一部分则为每销售一件产品,就抽出一元钱作为捐款.若除去第一年的最大获利(或最小亏损)以及第二年的捐款后,到第二年年底,两年的总盈利不低于67.5万元,请你确定此时销售单价的范围.
如图,已知正方形ABCD中,BE平分∠DBC且交CD边于点E,将△BCE绕点C顺时针旋转到△DCF的位置,并延长BE交DF于点G.(1)求证:△BDG∽△DEG;(2)若EG•BG=4,求BE的长.