如图,在一个长AB=40m、宽BC=30m的长方形小操场上,王刚从A点出发,沿着A→B→C的路线以3m/s的速度跑向C地.当他出发4s后,张华有东西需要交给他,就从A地出发沿王刚走的路线追赶,当张华跑到距B地8m的D处时,他和王刚在阳光下的影子恰好重叠在同一条直线上.此时,A处一根电线杆在阳光下的影子也恰好落在对角线AC上.(1)求他们的影子重叠时,两人相距多少米(DE的长)?(2)求张华追赶王刚的速度是多少?
已知:直线交轴于点,交轴于点,抛物线经过、、(1,0)三点.(1)求抛物线的解析式;(2)若点的坐标为(-1,0),在直线上有一点,使与相似,求出点的坐标;(3)在(2)的条件下,在轴下方的抛物线上,是否存在点,使的面积等于四边形的面积?如果存在,请求出点的坐标;如果不存在,请说明理由.
如图,在扇形中,半径长,;以为直径作半圆,点是弧上的一个动点,与半圆交于点,⊥于点,与交于点,连结. (1)求证:;(2)设, ,试求关于的函数关系式,并写出的取值范围;(3)若点落在线段上,当∽时,求线段的长度.
如图,小山岗的斜坡的坡度是,在与山脚距离米的处,测得山顶的仰角为,求小山岗的高(结果取整数:参考数据:,,).
如图,在菱形中,,,点是边的中点,点是边上一动点(不与点重合),延长交射线于点,连接,.(1)求证:四边形是平行四边形;(2)填空:①当的值为 时,四边形是矩形;②当的值为 时,四边形是菱形.
某校将举办“心怀感恩·孝敬父母”的活动,为此,校学生会就全校名同学暑假期间平均每天做家务活的时间,随机抽取部分同学进行调查,并绘制成如下条形统计图.(1)填空:本次调查抽取的人数为_______,估计全校同学在暑假期间平均每天做家务活的时间在分钟以上(含分钟)的人数为_______;(2)校学生会拟在表现突出的甲、乙、丙、丁四名同学中,随机抽取两名同学向全校汇报.请用树状图或列表法表示出所有可能的结果,并求恰好抽到甲、乙两名同学的概率.