在一个六角形体育馆的一角MAN内,用长为a的围栏设置一个运动器材存储区域(如图所示),已知,B是墙角线AM上的一点,C是墙角线AN上的一点.(1)若,求存储区域面积的最大值;(2)若,在折线MBCN内选一点D,使,求四边形存储区域DBAC的最大面积.
(本小题满分12分) 已知双曲线的离心率,其一条准线方程为. (Ⅰ)求双曲线的方程; (Ⅱ)如题20图:设双曲线的左右焦点分别为,点为该双曲线右支上一点,直线与其左支交于点,若,求实数的取值范围.
(本小题满分12分) 设函数,其中为常数. (Ⅰ)当时,判断函数的单调性; (Ⅱ)若函数在其定义域上既有极大值又有极小值,求的取值范围.
(本小题满分13分) 如题18图,平行六面体的下底面是边长为的正方形,,且点在下底面上的射影恰为点. (Ⅰ)证明:面; (Ⅱ)求二面角的大小.
(本小题满分13分) 一个口袋中有大小相同的2个白球和4个黑球,每次从袋中随机地摸出1个球,并换入1只相同大小的黑球,这样继续下去,求: (Ⅰ)第2次摸出的恰好是白球的概率; (Ⅱ)摸2次摸出白球的个数的分布列与数学期望.
(本小题满分13分) 已知,若函数的最小正周期为. (Ⅰ)求的值; (Ⅱ)求函数的单调递增区间.