设M是由满足下列性质的函数构成的集合:在定义域内存在,使得成立.(1)判断函数是否是集合M中的元素,并说明理由;(2)设函数,试求a的取值范围;(3)设函数的图象与函数的图象有交点,证明:函数.
(本小题满分12分)已知函数满足,对任意,都有,且.(Ⅰ)求函数的解析式;(Ⅱ)若,使方程成立,求实数的取值范围.
(本小题满分12分)已知 .设的最小正周期为.(Ⅰ)求的单调增区间;(Ⅱ)当时,求的值域;(Ⅲ)求满足且的角的值.
(本小题满分12分)有一种新型的洗衣液,去污速度特别快.已知每投放且个单位的洗衣液在一定量水的洗衣机中,它在水中释放的浓度(克/升)随着时间(分钟)变化的函数关系式近似为,其中.根据经验,当水中洗衣液的浓度不低于(克/升)时,它才能起到有效去污的作用.(Ⅰ)若投放个单位的洗衣液,分钟时水中洗衣液的浓度为(克/升),求的值 ;(Ⅱ)若投放个单位的洗衣液,则有效去污时间可达几分钟?
(本小题满分12分)在中,内角所对的边分别为,已知,.(Ⅰ)求的值;(Ⅱ)求的值.
(本小题满分14分)已知,函数.(Ⅰ)当时,求曲线在点处的切线的斜率;(Ⅱ)讨论的单调性;(Ⅲ)是否存在实数,使得方程有两个不等的实数根?若存在,求出的取值范围;若不存在,说明理由.