设M是由满足下列性质的函数构成的集合:在定义域内存在,使得成立.(1)判断函数是否是集合M中的元素,并说明理由;(2)设函数,试求a的取值范围;(3)设函数的图象与函数的图象有交点,证明:函数.
正实数数列{an}中,a1=1,a2=5,且{}成等差数列. (1)证明:数列{an}中有无穷多项为无理数; (2)当n为何值时,an为整数?并求出使an<200的所有整数项的和.
已知函数f(x)=(x-a)2(x-b)(a,b∈R,a<b). (1)当a=1,b=2时,求曲线y=f(x)在点(2,f(2))处的切线方程; (2)设x1,x2是f(x)的两个极值点,x3是f(x)的一个零点,且x3≠x1,x3≠x2.证明:存在实数x4,使得x1,x2,x3,x4按某种顺序排列后构成等差数列,并求x4.
如图,已知△ABC中的两条角平分线AD和CE相交于H,∠B=60°,F在AC上,且AE=AF. (1)证明:B,D,H,E四点共圆; (2)证明:CE平分∠DEF.
如图,两条相交线段、的四个端点都在抛物线上,其中,直线的方程为,直线的方程为. (1)若,,求的值; (2)探究:是否存在常数,当变化时,恒有?
设函数,,. (1)若,求的单调递增区间; (2)若曲线与轴相切于异于原点的一点,且的极小值为,求的值.