(本小题满分12分)已知函数满足,对任意,都有,且.(Ⅰ)求函数的解析式;(Ⅱ)若,使方程成立,求实数的取值范围.
(本题满分13分)已知数列{an}的前n项和为Sn,且an=(3n+Sn)对一切正整数n成立(I)证明:数列{3+an}是等比数列,并求出数列{an}的通项公式;(II)设,求数列的前n项和Bn;
如图,要计算西湖岸边两景点与的距离,由于地形的限制,需要在岸上选取和两点,现测得,,, ,,求两景点与的距离(精确到0.1km).参考数据:
已知数列{an}满足2an+1=an+an+2 (n∈N*),它的前n项和为Sn,且a3=-6,S6=-30.求数列{an}的前n项和的最小值.
已知函数,(1)求的值;(2)若,求的值域.
已知函数,其中为实数.(1)若时,求曲线在点处的切线方程;(2)当时,若关于的不等式恒成立,试求的取值范围.