某厂生产一种产品,每件产品的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,决定当一次订购量超过100件时,每多订购一件,订购的全部产品的出场单价就降低0.02元,根据市场调查,销售商一次订购量不会超过600件.(1)设一次订购x件,产品的实际出厂单价p元,写出函数的表达式;(2)当销售商一次订购多少件产品时,该厂获得的利润最大?其最大利润是多少?
已知,其中是常数. (1))当时, 是奇函数; (2)当时,的图像上不存在两点、,使得直线平行于轴.
在直三棱柱中,,,求: (1)异面直线与所成角的大小; (2)四棱锥的体积.
在等差数列和等比数列中,,,是前项和. (1)若,求实数的值; (2)是否存在正整数,使得数列的所有项都在数列中?若存在,求出所有的,若不存在,说明理由; (3)是否存在正实数,使得数列中至少有三项在数列中,但中的项不都在数列中?若存在,求出一个可能的的值,若不存在,请说明理由.
已知点、为双曲线:的左、右焦点,过作垂直于轴的直线,在轴上方交双曲线于点,且.圆的方程是. (1)求双曲线的方程; (2)过双曲线上任意一点作该双曲线两条渐近线的垂线,垂足分别为、,求的值; (3)过圆上任意一点作圆的切线交双曲线于、两点,中点为,求证:.
如图,制图工程师要用两个同中心的边长均为4的正方形合成一个八角形图形.由对称性,图中8个三角形都是全等的三角形,设. (1)试用表示的面积; (2)求八角形所覆盖面积的最大值,并指出此时的大小.