如图,已知△ABC中,∠B="90" º,AB=16cm,BC=12cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒. (1)出发2秒后,求PQ的长; (2)当点Q在边BC上运动时,出发几秒钟后,△PQB能形成等腰三角形? (3)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.
我们知道,当时,代数式的值是1;而方程的解是;于是,我们就称方程是代数式当时的“结果方程”。已知:方程是代数式当时的结果方程,你能求出的值吗?
如图,已知线段AB=9cm,点C是AB的中点,点D在直线AB上,且AB=3BD,求线段CD的长.
一个角的对顶角比它的补角的一半还少15°,求这个角的度数。
解方程:(1);(2)
先化简,再求值:,其中x=