已知椭圆上一点与椭圆的两个焦点的连线互相垂直.(1)求离心率和准线方程;(2)求的面积.
已知数列{an}满足的前n项和为Sn,且Sn=+n﹣1,(n∈N*).(1)求数列{an}的通项公式;(2)若数列{bn}的通项公式满足bn=n(1﹣an),求数列{bn}的前n项和Tn.
已知函数f(x)=1+sinxcosx.(1)求函数f(x)的最小正周期和单调递减区间;(2)若tanx=2,求f(x)的值.
设数列{an}满足当n>1时,.(1)求证:数列为等差数列;(2)试问a1a2是否是数列{an}中的项.如果是,是第几项;如果不是,说明理由.
,的夹角为120°,||=1,||=3.(1)7;(2).
设函数f(x)=﹣x(x∈R),其中m>0.(1)当m=1时,求曲线y=f(x)在点(1,f(1))处的切线的斜率;(2)求函数f(x)的单调区间与极值;(3)已知函数f(x)有三个互不相同的零点0,x1,x2,且x1<x2,若对任意的x∈[x1,x2],f(x)>f(1)恒成立,求m的取值范围.