在数轴上表示下列各数以及它们的相反数,并把这些数和它的相反数按从小到大的顺序用“<”号连接. 0, -2, 2.5,
如图,△ABC是一张锐角三角形的硬纸片,AD是边BC上的高,BC=40 cm,AD=30 cm,从这张硬纸片上剪下一个长HG是宽HE的2倍的矩形EFGH,使它的一边EF在BC上,顶点G、H分别在AC、AB上,AD与HG的交点为M. 求矩形的长与宽.
如图,在Rt△ABC中,∠C=90°,∠ABC的平分线交AC于点D,点O是AB上一点,⊙O过B、D两点,且分别交AB、BC于点E、F.(1)求证:AC是⊙O的切线;(2)已知AB=10,BC=6,求⊙O的半径r.
用纸折出黄金分割点:裁一张正方形的纸片ABCD,先折出BC的中点E,再折出线段AE,然后通过折叠使EB落到线段EA上,折出点B的新位置B′,因而EB′=EB,类似地,在AB上折出点B″使AB″=AB′,这时B″就是AB的黄金分割点,请你证明这个结论.
如图,在6×8网格图中,每个小正方形边长均为1,点O和△ABC的顶点均与小正方形的顶点重合.(1)以O为位似中心,在网格图中作△A′B′C′和△ABC位似,且位似比为1∶2;(2)连接(1)中的AA′,求四边形AA′C′C的周长(结果保留根号).
已知:△ABC在坐标平面内,三个顶点的坐标分别为A(0,3),B(3,4),C(2,2),(正方形网格中,每个小正方形的边长是1个单位长度)(1)画出△ABC向下平移4个单位得到的△A1B1C1,并直接写出C1点的坐标;(2)以点B为位似中心,在网格中画出△A2BC2,使△A2BC2与△ABC位似,且位似比为2∶1,并直接写出C2点的坐标及△A2BC2的面积.