如图所示,已知BD为△ABC的角平分线,CD为△ABC外角∠ACE的平分线,且与BD交于点D; (1)若∠ABC=60°,∠DCE=70°,则∠D= °; (2)若∠ABC=70°,∠A=80°,则∠D= °; (3)当∠ABC和∠ACB在变化,而∠A始终保持不变,则∠D是否发生变化?为什么?由此你能得出什么结论?(用含∠A的式子表示∠D)
解方程 (1)3x﹣7(x﹣1)=3﹣2(x+3) (2)x﹣=﹣1.
尺规作图(不写作法,仅保留作图痕迹,在原图上不给分): 已知线段a、b(a<b),求作线段AB,使AB=b﹣a.
如图,平面上有四个点A、B、C、D,根据下列语句画图. (1)画直线AB;作射线BC;画线段CD; (2)连接AD,并将其反向延长至E,使DE=2AD; (3)找到一点F,使点F到A、B、C、D四点距离和最短.
如图:抛物线y=-+bx+c与x轴交于A、B两点,与y轴交于点C,且∠BAC=α,∠ABC=,tanα-tanβ=2,∠ACB=90°. (1)求点C的坐标; (2)求抛物线的解析式; (3)若抛物线的顶点为P,求四边形ABPC的面积.
如图,平面直角坐标系中,四边形OABC为矩形,点A、B的坐标分别为(6,0),(6,8)、动点M、N分别从O、B同时出发,都以每秒1个单位的速度运动、其中,点M沿OA向终点A运动,点N沿BC向终点C运动、过点N作NP⊥BC,交AC于P,连结MP、已知动点运动了t秒、 (1)P点的坐标为( , )(用含t的代数式表示); (2)试求△MPA面积的最大值,并求此时t的值; (3)请你探索:当t为何值时,△MPA是一个等腰三角形?