(本小题14分)已知单调递增的等比数列{an}满足a2+a3+a4=28,且a3+2是a2,a4的等差中项.(1)求数列{an}的通项公式;(2)若bn=,Sn=b1+b2+…+bn,对任意正整数n,Sn+(n+m)an+1<0恒成立,试求m的取值范围.
(本小题满分12分)已知椭圆C:的离心率为,长轴长为8.。 (Ⅰ)求椭圆C的标准方程; (Ⅱ)若不垂直于坐标轴的直线经过点P(m,0),与椭圆C交于A,B两点,设点Q的坐标为(n,0),直线AQ,BQ的斜率之和为0,求的值。
(本小题满分12分)某灯具厂分别在南方和北方地区各建一个工厂,生产同一种灯具(售价相同),为了了解北方与南方这两个工厂所生产得灯具质量状况,分别从这两个工厂个抽查了25件灯具进行测试,结果如下: (Ⅰ)根据频率分布直方图,请分别求出北方、南方两个工厂灯具的平均使用寿命; (Ⅱ)某学校欲采购灯具,同时试用了南北两工厂的灯具各两件,试用500小时后,若北方工厂生产的灯具还能正常使用的数量比南方工厂多,该学校就准备采购北方工厂的灯具,否则就采购南方工厂的灯具,试估计该学校采购北方工厂的灯具的概率。(视频率为概率)
(本小题满分 14 分)设数列的首项,且,,. (Ⅰ)证明:是等比数列; (Ⅱ)若,数列中是否存在连续三项成等差数列?若存在,写出这三项,若不存在说明理由. (Ⅲ)若是递增数列,求的取值范围.
(本小题满分13分)已知函数(、为常数). (Ⅰ)若,解不等式; (Ⅱ)若,当时,恒成立,求的取值范围.
(本小题满分12分)已知函数,(). (Ⅰ)求函数的递增区间; (Ⅱ)若函数在上有两个不同的零点、,求的值.